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Evolution from BCS Superconductivity to Bose Condensation: Analytic Results forthe crossover in three dimensionsM. Marini(1), F. Pistolesi,(1;2)� and G.C. Strinati(1)(1) Dipartimento di Matematica e Fisica, Sezione INFM, Universit�a di Camerino, I-62032 Camerino, Italy(2) Scuola Normale Superiore, Sezione INFM, I-56126 Pisa, Italy(11 March 1997)We provide an analytic solution for the mean-�eld equations and for the relevant physical quan-tities at the Gaussian level, in terms of the complete elliptic integrals of the �rst and second kinds,for the crossover problem from BCS superconductivity to Bose-Einstein condensation of a three-dimensional system of free fermions interacting via an attractive contact potential at zero tempera-ture. This analytic solution enables us to follow the evolution between the two limits in a particularlysimple and transparent way, as well as to verify the absence of singularities during the evolution.PACS numbers: 74.20 z, 74.20.Fg, 67.40.-wI. INTRODUCTIONThe interest in the crossover from BCS superconduc-tivity to Bose-Einstein (BE) condensation has quite re-cently increased both experimentally and theoreticallyafter the appearance of new angular resolved photoemis-sion data on underdoped cuprate samples, which indicatethe persistence of a gap in the single-particle excitationspectrum at temperatures well above the superconduct-ing critical temperature.1{3 Previous to these data thesuggestion that superconductivity in cuprates (as well asin other \exotic" materials) might require an intermedi-ate approach between the two (BCS and BE) limits hasbeen emphasized especially by Uemura.4From the theoretical point of view, evolution from BCSsuperconductivity to BE condensation has been consid-ered originally by Nozi�eres and Schmitt-Rink,5 follow-ing the pioneering works by Eagles6 and Leggett.7 Morerecently, the crossover problem was addressed in Refs.8{10, prompted by the experimental suggestion that thesuperconducting coherence length in cuprates is consid-erably shorter than in conventional superconductors. Inall these works known results were recovered analyticallyin the two (BCS and BE) limits. However, no analyticresult was obtained for the most interesting crossover re-gion, which had thus to be treated numerically (with thesole exception of the two-dimensional case considered inRef. 11).In this paper we provide an analytic solution in thethree dimensional case covering the whole crossover re-gion for a number of physical quantities evaluated at themean-�eld level and with the inclusion of Gaussian uc-tuations, by considering a system of fermions in free spaceat zero temperature mutually interacting via an attrac-tive contact potential. For this case we are, in fact, ableto express these physical quantities in terms of the com-plete elliptic integrals of the �rst and second kinds, whoseanalytic properties and numerical values are extensivelytabulated.12 Our solution enables us to interpolate in arigorous fashion between the two (BCS and BE) limits,thus avoiding the problems which occur with a full nu-

merical approach. Although our analytical solution hasbeen unavoidably obtained with simplifying assumptions(namely, at zero temperature and using a free-particledispersion relation and a contact interaction potential),it might nevertheless be regarded as a reference solutionwith which numerical solutions obtained for more com-plicated cases could be compared.The plan of the paper is as follows. In Section IIwe express a number of mean-�eld quantities (such asthe chemical potential �, the gap parameter �, thepair-correlation length �pair, and the bound-state en-ergy �o) in terms of the complete elliptic integrals of the�rst and second kinds with argument �2 = (p1 + x2o +xo)=(2p1 + x2o) [where xo = �=�] ranging from 0 (BElimit) to 1 (BCS limit). In Section III our analysis is ex-tended to quantities such as the phase coherence length�phase and the sound velocity s, by considering the Gaus-sian uctuations about the mean �eld. To keep the pre-sentation compact, the properties of the elliptic integralsused in our treatment are summarized in Appendix A.In Appendix B we report for the sake of comparison thesolution for the two-dimensional case given previously byRef. 11.II. ANALYTIC RESULTS AT THE MEAN-FIEDLEVELWe consider the Hamiltonian (�h = 1)H =X� Z dr y�(r)��r22m � �� �(r)+g Z dr y"(r) y#(r) #(r) "(r) (2.1)where  �(r) is the fermionic �eld operator with spin pro-jection �,m is the fermionic (e�ective) mass, and g = V
is the strength of the short-range (contact) potential be-tween fermions with V < 0 (
 being the volume occupiedby the system).1



At the zero temperature, the mean-�eld equations forthe gap parameter � and the chemical potential � are ob-tained by a suitable decoupling of the Hamiltonian (2.1)and are given by13� 1V =Xk 12Ek (2.2)n = N
 = 2
Xk v2k (2.3)where k is the wave vector, N the total number offermions, and�k = k22m � �; Ek =q�2k +�2; v2k = 12 �1� �kEk� :(2.4)Owing to our choice of a contact potential, Eq. (2.2)diverges in the ultraviolet (both in two and three dimen-sions) and requires a suitable regularization. In threedimensions it is common practice to introduce the scat-tering amplitude as de�ned via the equation8{10m4�as = 1
V + 1
Xk mk2 ; (2.5)where the divergent sum on the right-hand side ofEq.(2.5) results in a �nite value of as by letting V ! 0in a suitable way. Subtracting Eq. (2.5) from Eq. (2.2)we obtain � m4�as = 1
Xk � 12Ek � mk2� (2.6)which has to be solved simultaneously with Eq. (2.3) todetermine � and � as functions of as.In three dimensions it is convenient to introduce thefollowing dimensionless quantities8>>><>>>: x2 = k22m 1� ; xo = �� ;�x = �k� = x2 � xo ; Ex = Ek� =p�2x + 1(2.7)with k = jkj, and express Eqs. (2.3) and (2.6) in theform � 1as = 2� (2m�)1=2I1(xo) (2.8a)n = 12�2 (2m�)3=2I2(xo) (2.8b)where

I1(xo) = Z 10 dxx2� 1Ex � 1x2� (2.9)I2(xo) = Z 10 dxx2�1� �xEx� : (2.10)The integrals (2.9) and (2.10) were originally consideredby Eagles,6 who evaluated them numerically as functionsof the crossover parameter xo ranging from �1 (BElimit) to +1 (BCS limit). We shall soon show that theintegrals (2.9) and (2.10) can actually be evaluated in aclosed form for all values of xo. Note that I2(xo) � 0while I1(xo) can take both signs.Before proceeding further, it is convenient to renderEqs. (2.8) dimensionless by introducing the Fermi en-ergy �F = k2F=2m = (3�2n)2=3=2m where kF is the Fermimomentum. In this way Eq. (2.8b) becomes��F = � 23I2(xo)�2=3 (2.11)and Eq. (2.8a) reduces to1kF as = � 2� � 23I2(xo)�1=3 I1(xo) : (2.12)Note that the right-hand sides of Eqs. (2.11) and (2.12)depend on xo only. Equation (2.12) can thus be invertedto obtain xo as a function of kFas; from Eq. (2.11) andfrom �=�F = xo�=�F one can then obtain the two pa-rameters �=�F and �=�F as functions of kFas.Alternatively, one can use kF �pair as the independentvariable in the place of kFas, where �pair is the charac-teristic length for pair correlation given by the followingexpression in three dimensions at the mean-�eld level:10�2pair = 1m2 Z 10 dk(k4�2k=E6k)Z 10 dk(k2=E2k) = 2m� I3(xo)I4(xo) (2.13)where I3(xo) = Z 10 dxx4�2xE6x (2.14)I4(xo) = Z 10 dx x2E2x (2.15)are two additional integrals expressed in terms of thequantities (2.7). Contrary to the integrals I1 and I2, theintegrals I3 and I4 are elementary and can be evaluatedvia the residues technique. One obtains:I3(xo) = �16 x1(1 + x41)(1 + x2o)1=2 (2.16)I4(xo) = �2 x1 (2.17)with the notation2



x21 = p1 + x2o + xo2 : (2.18)Making use of Eq. (2.11) we obtain eventually(kF �pair)2 = �F2� (1 + x41)(1 + x2o)1=2 = (1 + x41)2(1 + x2o)1=2 �3I2(xo)2 �2=3 :(2.19)In this way Eq. (2.12) can be dropped in favor of Eq.(2.19), which can be inverted to obtain xo as a functionof kF �pair .There remains to evaluate the integrals I1(xo) enteringEq. (2.12) and I2(xo) entering Eqs. (2.11) and (2.19).To this end, we introduce the auxiliary integralsI5(xo) = Z 10 dx x2E3x ; (2.20)I6(xo) = Z 10 dxx2�xE3x ; (2.21)such thatI1(xo) = 2 (xoI6(xo) � I5(xo)) (2.22)I2(xo) = 23 (xoI5(xo) + I6(xo)) (2.23)after integration by parts. The auxiliary integrals I5(xo)and I6(xo) can, in turn, be expressed as linear com-binations of the complete elliptic integrals of the �rst[F (�2 ; �)] and second [E(�2 ; �)] kinds. Reduction of ageneric integral of the elliptic kind to the normal Legen-dre's form has been treated at length in the literature.14Here we proceed as follows. Integration by parts givesfor I6(xo) [cf. Eq. (2.21)]:I6(xo) = �12 Z 10 dxxddx 1Ex = 12 Z 10 dx 1Ex= 12 Z 10 dx 1(x4 � 2xox2 + x2o + 1)1=2= 12(1 + x2o)1=4F (�2 ; �) (2.24)where in the last line use has been made of the results ofAppendix A and where (0 � �2 < 1)�2 = x21(1 + x2o)1=2 (2.25)with x1 given by Eq. (2.18). For I5(xo) we obtain instead[cf. Eq. (2.20)]:I5(xo) = Z 10 dx x2(x4 � 2xox2 + x2o + 1)3=2= (1 + x2o)1=4E(�2 ; �)� 14x21(1 + x2o)1=4F (�2 ; �)(2.26)

where again use has been made of the results of AppendixA.In conclusion, we obtain for the quantities of interest[cf. Eqs. (2.11), (2.12), and (2.19)]:��F = 1(xoI5(xo) + I6(xo))2=3 (2.27)��F = �� ��F = xo(xoI5(xo) + I6(xo))2=3 (2.28)1kFas = � 4� (xoI6(xo)� I5(xo))(xoI5(xo) + I6(xo))1=3 (2.29)kF �pair = �1 + x412 �1=2 (xoI5(xo) + I6(xo))1=3(1 + x2o)1=4 (2.30)with I5(xo) and I6(xo) given by Eqs. (2.26) and (2.24),respectively. It is sometimes convenient to normalizethe chemical potential, when negative, with respect tothe bound-state energy �o of the associated two-fermionproblem. In the three-dimensional case, �o can be ex-pressed in terms of as whenever as � 0. One �nds10�o = 1ma2s ; (2.31)so that [cf. Eq. (2.29)]�o�F = 2(kF as)2 = 32�2 (xoI6(xo) � I5(xo))2(xoI5(xo) + I6(xo))2=3 : (2.32)
FIG. 1. �=�F vs kF �pair, obtained from Eqs. (2.27) and(2.30). Full curve: exact solution; dashed curve: BCS ap-proximation, obtained by including only the �rst two termsin Eqs. (A.7) and (A.8); dotted curve: BE approximation,obtained by including only the �rst two terms in Eqs. (A.5)and (A.6).3



FIG. 2. �=�F for � > 0 and �=(�o=2) for � < 0 vs kF �pair ,obtained from Eqs. (2.28), (2.30), and (2.32). Conventionsare as in Fig. 1.
FIG. 3. �o=�F vs kF �pair, obtained from Eqs. (2.30) and(2.32) when as given by Eq. (2.29) is positive. Conventionsare as in Fig. 1.Numerical values of the complete elliptic integrals Fand E have been extensively tabulated.12 Otherwise, onemay generate them with the required accuracy via Eqs.(A.5)-(A.8). In this way, the desired values of I5(xo)and I6(xo) can be obtained for given xo (or for givenkF �pair by inverting Eq. (2.30)). In Figs. 1-3 we re-port, respectively, the values of �=�F , �=�F for � > 0and �=(�o=2) for � < 0, and �o=�F vs kF �pair obtainedby this procedure. Within numerical accuracy, all values

coincide with those calculated by solving numerically thegap equation and the normalization condition (2.3) forthe limiting case of a contact potential.10Besides the exact result (full curve), Figs. 1-3 showfor comparison two additional curves obtained by ap-proximating, respectively, the elliptic integrals F and Eby the �rst two terms of Eqs. (A.5) and (A.6) (dottedcurve) and by the �rst two terms of Eqs. (A.7) and (A.8)(dashed curve). In principle, these approximate resultsare expected to be reliable in the BE and BCS limits,in the order. Note, however, that the BE approximateresult is surprisingly accurate on the BCS side of thecrossover.In the BCS and BE limits the values of I5(xo) andI6(xo) can be obtained by retaining only a few signi�-cant terms in the expansions (A.5)-(A.8). In particular,in the BCS limit xo � 1 so that �2 ' 1� 1=(4x2o) and� I5(xo) ' pxoI6(xo) ' lnxo=(2pxo) : (2.33)Then: 8>><>>: �=�F ' 1=xo�=�F ' 11=(kFas) ' �(2=�) lnxokF �pair ' xo=p2 : (2.34)In the BE limit, on the other hand, xo < 0 and jxoj � 1so that �2 = 1=(4x2o) and� I5(xo) ' �=(16jxoj3=2)I6(xo) ' �=(4jxoj1=2) : (2.35)Then:8>>>><>>>>: �=�F ' [16=(3�)]2=3jxoj1=3�=�F ' �[16=(3�)]2=3jxoj4=31=(kFas) ' [16=(3�)]1=3jxoj2=3�o=�F ' 2[16=(3�)]2=3jxoj4=3kF �pair ' 1p2 [16=(3�)]�1=3jxoj�2=3 : (2.36)The limiting BCS (2.34) and BE (2.36) values coincidewith those calculated previously by di�erent methods.10We mention, �nally, that another quantity which canbe evaluated analytically at the mean-�eld level for allvalues of xo is the single-particle density of states.All the above results hold for the three-dimensionalsystem. Analogous results for the two-dimensional sys-tem are straightforwardly expressed in terms of elemen-tary integrals and are reported for comparison in Ap-pendix B.III. ANALYTIC RESULTS AT THE GAUSSIANLEVELBesides the quantities of Section II de�ned at themean-�eld level, additional quantities whose de�nition4



requires the introduction of Gaussian uctuations canalso be expressed analytically in three dimensions at zerotemperature for the Hamiltonian (2.1), in terms of thecomplete elliptic integrals F and E for all values of theparameter xo (i.e., following the evolution from BCS toBE). In particular, we shall consider the phase coherencelength �phase (associated with the spatial uctuations ofthe superconducting order parameter) and the sound ve- locity s (associated with the Goldstone mode of the bro-ken symmetry).The matrix of the Gaussian uctuations haselements10;15�(q; !) = � A(q; !) B(q; !)B(q; !) A(�q;�!) � (3.1)where ! is the frequency and (for a real order parameter)A(q; !) = 1
Xk  12Ek � u2ku2k�qEk +Ek�q � ! � i� � v2kv2k�qEk + Ek�q + ! + i�! (3.2)B(q; !) = 1
Xk ukvkuk�qvk�q� 1Ek +Ek�q � ! � i� + 1Ek + Ek�q + ! + i�� (3.3)at zero temperature. In these expressions, u2k = 1� v2kand � is a positive in�nitesimal. To extract �phase and swe need consider the expansion of A(q; !) and B(q; !)for small values of jqj and !, such thatq22m � !� and ! � !� (3.4)where !� = � 2� ; � > 02p�2 + �2 ; � < 0 : (3.5)The result is:A(q; !) = a0 + a1 ! + a2 q2 + a3 !2 + : : : (3.6)B(q; !) = b0 + b2 q2 + b3 !2 + : : : ; (3.7)witha0 = 1
Xk �24E3k (3.8a)a1 = � 1
Xk �k4E3k (3.8b)a2 = 1
Xk 132m ��k(2�2k ��2)E5k + k2dm�2(8�2k + 3�2)E7k �(3.8c)a3 = � 1
Xk 2�2k +�216E5k (3.8d)and

b0 = a0 (3.9a)b2 = 1
Xk 132m ��3�k�2E5k + k2dm�2(2�2k � 3�2)E7k �(3.9b)b3 = 1
Xk �216E5k (3.9c)(d being the dimensionality). In particular, to determine�phase one has to consider the quantity10A(q; ! = 0) + B(q; ! = 0) = 2a0 + (a2 + b2)q2 + : : :(3.10)from which �2phase = a2 + b22a0 : (3.11)To determine the sound velocity s one has instead toconsider the full determinantA(q; !)A(q;�!) � B(q; !)2 =2a0(a2 � b2)q2 + [2a0(a3 � b3)� a21]!2 + : : : (3.12)which vanishes for ! = !(q) = sjqj, withs2 = 2a0(a2 � b2)2a0(b3 � a3) + a21 : (3.13)We are left with evaluating the integrals entering Eqs.(3.11) and (3.13). In three dimensions we obtain:a0 = m(2�)2 (2m�)1=2I5(xo) ; (3.14)5



a1 = � m(2�)2 �2m� �1=2 I6(xo) ; (3.15)a2 + b2 = 1(2�)2 14 �2m� �1=2 �Z 10 dxx2�3xE5x � 2 Z 10 dxx2�xE5x + 103 Z 10 dxx4�2xE7x � ; (3.16)a2 � b2 = 1(2�)2 14 �2m� �1=2 �I6(xo) + 2 Z 10 dx x4E5x � ; (3.17)b3 � a3 = 1(2�)2 14 �2m� �3=2 I5(xo) ; (3.18)where use has been made of the notation (2.7) and ofthe integrals (2.20) and (2.21). The four new integralsappearing in Eqs. (3.16) and (3.17) can also be expressedas linear combinations of I5(xo) and I6(xo). Integrationsby parts and simple manipulations lead to:Z 10 dxx2�xE5x = 16 Z 10 1E3x = 16(1 + x2o) �Z 10 dx x4E3x�2 Z 10 dxx2�xE3x + Z 10 dx 1Ex�= xoI5(xo) + I6(xo)6(1 + x2o) ; (3.19)Z 10 dxx2�3xE5x = I6(xo)� Z 10 dxx2�xE5x ; (3.20)Z 10 dx x4E5x = Z 10 dxx2�xE5x + x0 Z 10 dx x2E5x= (1 + x2o) Z 10 dxx2�xE5x + x02 I5(xo) ; (3.21)Z 10 dxx4�2xE7x = 310 Z 10 dxx2�xE5x + 15 Z 10 dx x4E5x : (3.22)In conclusion we obtain:a2 + b2 = 1(2�)2 112 �2m� �1=2��2I6(xo) + (1 + 4x2o)3(1 + x2o) [I6(xo) + xoI5(xo)]� (3.23)anda2 � b2 = 1(2�)2 13 �2m� �1=2 fI6(xo) + xoI5(xo)g :(3.24)Equation (3.11) thus reduces to(kF �phase)2 = �F� 112I5(xo)��2I6(xo) + (1 + 4x2o)3(1 + x2o) [I6(xo) + xoI5(xo)]� (3.25)with �F =� given by Eq. (2.27), while Eq. (3.13) becomes

� svF �2 = 13 ��F I5(xo)(I6(xo) + xoI5(xo))I5(xo)2 + I6(xo)2 (3.26)where vF = kF=m.The expressions (3.25) and (3.26) provide the desiredanalytic expressions of kF �phase and s=vF for all valuesof xo. Using again Eqs. (2.24) and (2.26) and the tab-ulated values of the elliptic integrals, we report in Figs.4 and 5 the values of kF �phase and s=vF , respectively, vskF �pair .
FIG. 4. kF �phase vs kF �pair, obtained from Eqs. (2.30)and (3.25). Conventions are as in Fig. 1.To within numerical accuracy, we reproduce in this waythe numerical results of Ref. 10 for kF �phase. Note, again,that the BE approximation (dotted curve) is surprisinglyaccurate even on the BCS side.In the BCS and BE limits one can use the approximatevalues (2.33) and (2.35), in the order, for the integralsI5(xo) and I6(xo). This gives:� kF �phase ' xo=3s=vF ' 1=p3 (3.27)6



in the BCS limit, and� kF �phase ' (3�jxoj=16)1=3s=vF ' (12�jxoj)�1=3 (3.28)in the BE limit. Note that in the BE limit the products �phase = 1m � svF � (kF �phase) ' 14m (3.29)is a constant and coincides with the Bogoliubov result(2mB)�1 for composite bosons with massmB = 2m, thuscon�rming the general results established in Ref. 10 forthe mapping onto a bosonic system in the strong-couplinglimit.
FIG. 5. s=vF vs kF �pair, obtained from Eqs. (2.30) and(3.26). Conventions are as in Fig. 1.An additional quantity which can be evaluated ana-lytically at the Gaussian level is the coeÆcient  of thequartic term in the dispersion relation!(q)2 = s2q2 +  � q24m�2 ; (3.30)obtained by expanding the determinant (3.12) to higherorder. Its expression in rather involved and will not bereported here. It is nonetheless interesting to note thatin the BCS limit ' �256135(kF �pair)2 (3.31)is negative (and large), so that the dispersion relation!(q)2 ' v2Fq23 �1� 13q2�2pair� (3.32)holds for jqj smaller then a critical value qc / 1=�pair.This implies that in the BCS limit the wavelength of the

collective mode associated with the symmetry breakingcannot be smaller than the size of a Cooper pair.The above results hold in three dimensions. In two di-mensions both �phase and s can be expressed in terms ofelementary integrals, as shown in Appendix B.IV. CONCLUDING REMARKSIn this paper we have provided the analytic solutionof the crossover problem from BCS to BE in the three-dimensional case for a system of fermions interacting viaan attractive contact interaction in free space, at themean-�eld level and with the inclusion of Gaussian uc-tuations. Although the assumptions required to obtainour analytic solution might be oversimpli�ed in appli-cations to realistic systems, it could be interesting yetto compare our analytic solution with numerical calcu-lations describing more realistic cases. In particular,besides adopting a more sensible momentum-dependentform of the interaction potential, the free one-particle dis-persion relation ougth to be replaced by the actual bandstructure of the medium.In addition, a detailed description of the crossoverproblem from BCS to BE would require one to intro-duce already at the mean-�eld level the coupling with thecharge degrees of freedom, whose e�ects are expected tobe especially important in the crossover region of inter-est, intermediate between these two limits.16In spite of these limitations, and considering the factthat analytic results for the crossover problem from BCSto BE were thus far limited to the two-dimensional caseor to the two limits, our analytic solution is useful as itenables one to describe the crossover region in a compactway with very limited e�ort.ACKNOLEDGEMENTSOne of us (F.P.) aknowledges receipt of �nancial sup-port from Italian INFM through the Unit�a di Camerinoand the Sezione Teorica.APPENDIX A: RELEVANT PROPERTIES OFELLIPTIC INTEGRALSIn this Appendix we briey review the properties ofelliptic integrals that are relevant to our treatment.The elliptic integrals of the �rst and second kinds withmodulus � are de�ned by12;17F (�; �) = Z �0d' 1p1� �2 sin2' (A1)E(�; �) = Z �0d'q1� �2 sin2' (A2)7



with �2 < 1. They satisfy the propertiesF (n�; �) = 2nF (�2 ; �) (A3)E(n�; �) = 2nE(�2 ; �) (A4) (n integer), and are said to be complete when � = �=2.The complete elliptic integrals admit the following seriesrepresentations:F (�2 ; �) = �2 (1 + �12�2 �2 +�1 � 32 � 4�2 �4 + : : :+ �(2n � 1)!!2nn! �2 �2n + : : :) (A.5)E(�2 ; �) = �2 (1� �12�2 �2 ��1 � 32 � 4�2 �43 � : : :� �(2n� 1)!!2nn! �2 �2n2n� 1 � : : :) (A.6)F (�2 ; �) = ln 4�0 + �12�2�ln 4�0 � 21 � 2��02 +�1 � 32 � 4�2�ln 4�0 � 21 � 2 � 23 � 4��04 + : : : (A.7)E(�2 ; �) = 1 + 12 �ln 4�0 � 11 � 2��02 + 12 � 322 � 4 �ln 4�0 � 21 � 2 � 13 � 4��04 + : : : (A.8)where �0 = p1� �2 is known as the complementarymodulus. The representations (A.5) and (A.6) are to bepreferred when �2 � 1; when �2 ' 1 and �02 � 1 therepresentations (A.7) and (A.8) are to be preferred in-stead.Equations (2.24) and (2.26) of the text are obtained byadapting tabulated results and using the properties (A3)and (A4). We obtain:18Z 10 dx 1px4 + 2b2x2 + a4 = 12aF (�; �) = 1aF (�2 ; �)(A.9)Z 10 dx x2px4 + 2b2x2 + a4 = aE(�; �)2(a4 � b4) � F (�; �)4a(a2 � b2)= aa4 � b4E(�2 ; �)� 12a(a2 � b2)F (�2 ; �) (A.10)where a2 > b2 > �1, a2 > 0, and �2 = (a2 � b2)=(2a2).Comparison of Eqs. (A.9) and (A.10) with Eqs. (2.24)and (2.26) leads us to identifyb2 = �xo ; a4 = 1 + x2o ; �2 = p1 + x2o + xo2p1 + x2o(A.11)and results eventually into the right-hand sides of Eqs.(2.24) and (2.26).APPENDIX B: TWO-DIMENSIONAL CASEThe analytic solution for the two-dimensional case hasbeen already provided in Ref. 11. Its derivation is sim-pler than for the three-dimensional counterpart obtained

in this paper, since it can be expressed in terms of ele-mentary integrals. For the sake of comparison, we reportin this Appendix the two-dimensional solution on equalfooting of the three-dimensional solution discussed in thetext.Quite generally, in two dimensions the bound-state en-ergy �o exists for any value of the interaction strength g.For the contact potential we are considering, however,the bound-state equation� 1g = 1
Xk 1k2=2 + �o = m2� Z 10 dy 12y + �o=� (B.1)[with y = k2=(2m�)] needs to be suitably regularized byintroducing an ultraviolet cuto�. This cuto� can, in turn,be removed from further consideration by combining Eq.(B.1) with the gap equation (2.2), namely,� 1g = 12
Xk 1p�2k +�2 = m4� Z 1�xodz 1(1 + z2)1=2 (B.2)[with z = y�xo and xo given by Eq. (2.7)] which requiresan analogous regularization. Performing the elementaryintegrations in Eqs. (B.1) and (B.2) one obtains�o� =p1 + x2o � xo : (B.3)The normalization condition (2.3) gives furthern = m�2� Z 1�xodz�1� zp1 + z2� = m�2� �xo +p1 + x2o� :(B.4)Since in the normal state n = k2F=(2�) = m�F =�, Eq.(B.4) reads ��F = 2xo +p1 + x2o : (B.5)8



Multiplying at this point both sides of Eqs. (B.3) and(B.5) yields �o�F = 2p1 + x2o � xop1 + x2o + xo : (B.6)Finally, the pair-correlation length can be obtainedfrom its de�nition [cf. Eq. (2.13) for the three-dimensional case]:�2pair = 1m2 Z 10 dk(k3�2k=E6k)Z 10 dk(k=E2k) = 2m� R10dy(y�2y=E6y)R10dy(1=E2y) (B.7)with the dimensionless quantities( y = k2=(2m�) ; xo = �=� ;�y = y � xo ; Ey = q�2y + 1 (B.8)[in the place of (2.7) for the three-dimensional case]. Theintegrals in Eq. (B.7) are again elementary and give:(kF �pair)2 = 12 �F� �xo + �2 + x2o1 + x2o���2 + arctan xo��1� :(B.9)It is then clear that �=�F , �=�F = xo�=�F , �o=�F , andkF �pair can be expressed as functions of xo. [Note that noreference to the scattering amplitude as has been givenin two dimensions].Alternatively, Eq. (B.9) with �F=� given by Eq. (B.5)can be inverted to express xo (as well as all other quan-tities) as a function of kF �pair.At the Gaussian level, all integrals entering the de�ni-tions (3.8) and (3.9) of the coeÆcients of the expansions(3.6) and (3.7) are elementary in two dimensions. Weobtain: a0 = m8�p1 + x2o + xop1 + x2o (B.10)a1 = �m8� 1�p1 + x2o (B.11)a2 + b2 = 148� 1� �xo + x4o + 3x2o + 1(1 + x2o)3=2 � (B.12)a2 � b2 = 116�p1 + x2o + xo� (B.13)b3 � a3 = m16� 1�2p1 + x2o + xop1 + x2o : (B.14)These results give(kF �phase)2 = 16 �F� p1 + x2op1 + x2o + xo �xo + x4o + 3x2o + 1(1 + x2o)3=2 �(B.15)and
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